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Abstract: - This paper proposes an analytical design procedure for a particular class of 2D filters, namely 
Gaussian-shaped FIR filters with circular symmetry. We approach both the low-pass and band-pass circular filters, 
which are adjustable in selectivity and peak frequency. The design starts from a specified 1D Gaussian prototype 
filter, approximated efficiently using Chebyshev series. A frequency transformation expressed in matrix form is 
applied to the prototype, generating the circular filter. These approximations and frequency mappings lead directly 
to the transfer function or frequency response of the circular filter with desired characteristics. Several relevant 
design examples are provided for both types of filters. The filters designed through this method are accurate in 
shape and efficient, of relatively low order, and their frequency response results in either a factored or nested form, 
convenient for implementation. Due to this parametric approach, the designed 2D filters are adjustable, therefore 
by changing the specifications, new 2D circular filters result in a straightforward manner and the design need not 
be resumed each time from the start, as generally is the case with most numerical optimization techniques. 
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1 Introduction 
Two-dimensional filters have constantly developed 
as an essential research field, due to their important 
applications in digital image processing, and various 
design techniques have been elaborated [1]. As an 
alternative to the well-known optimization methods 
based on numerical algorithms, generally leading to 
optimal filters for the imposed specifications, there 
have been also developed analytical design methods 
which have their advantages, such as a closed form 
of the filter frequency response and the tunability, or 
the capability to adjust filter characteristics through 
their parameters. These analytic design techniques 
rely on 1D prototypes, to which a specific frequency 
transformation is applied, depending on the desired 
2D filter. A convenient and largely used tool for 2D 
filter design is also the McClellan transform [2], [3]. 
There exist a large variety of 2D filters with various 
shapes, both of FIR and IIR type which find specific 
applications in image processing. Circular filters are 
largely used due to their properties and many design 
methods have been developed in earlier and more 
recent papers such as [4]-[8]. Efficient design of 
anisotropic Gaussian filters is achieved in [9], [10]. 
Applications of the circular Gabor filters in texture 
segmentation are given in [11]. Some recent, novel 

filter design techniques are also found in [12], [13]. 
The author has approached analytical design of 2D 
FIR and IIR filters in previous works. Some circular 
filters were designed in [14], while in [15] and [16] 
circular filter banks, with applications in biomedical 
image filtering, are proposed. Directional and square 
IIR filters are described in [17]. Separable Gaussian 
directional FIR filters were approached in [18]. 
This work introduces an analytical design method of  
parametric circularly-symmetric 2D FIR filters, with 
a Gaussian shape. The novelty is that the resulted 
filters are adjustable through specified parameters,  
controlling the selectivity and the peak frequency 
for band-pass filters. The design process starts from 
a 1D prototype filter with factored transfer function, 
to which a specific frequency mapping is applied, 
leading directly to the desired 2D filter frequency 
response, which also results directly factored, thus 
allowing for convenient implementation. The paper 
is organized as follows: section 2 introduces the 
Gaussian prototype, approximated in section 3 as a 
trigonometric series, then as a polynomial; also a 
frequency mapping for circular filters is defined in 
matrix form. Several design examples of adjustable 
low-pass and band-pass circular filters are provided, 
for specified selectivity and peak frequency.    
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2 Gaussian Prototype Filters 
Zero-phase filters (both FIR and IIR), in particular 
Gaussian filters are often used in image processing 
because they have the useful feature to yield filtered 
images free of any phase distortions. Furthermore, 
the 2D Gaussian is separable, therefore it can be 
implemented as a cascade of 1D filters. We begin 
our design with the 1D Gaussian prototype filter:  

   2 2exp 2G                           (1) 
This is the Fourier transform of Gaussian function in 
continuous spatial variable x:  

   2 2( ) 1 2 exp 2g x x                 (2) 

For simplicity, instead of (1), we use the expression 
2( ) exp( )PG p   , with 2 2p  , where p has 

the role of a selectivity parameter; the larger the 
value of p, the narrower is the Gaussian. A 1D band-
pass (BP) Gaussian filter may be put into the form: 

     2 2
0 0exp ( ) exp ( )BPG p p             (3) 

where 0  is the BP filter central or peak frequency. 
So ( )BPG   is the sum of two elementary Gaussians 

( )G   shifted around 0  and 0 .  
The design procedure presented as follows is based 
on a polynomial approximation of the 1D Gaussian 
prototype function 2exp( )p .  
A very efficient approximation (with best tradeoff 
between accuracy and approximation order) is given 
by the Chebyshev series method, which yields an 
uniform approximation of a given function over a 
specified range, unlike Taylor expansion. The single 
drawback is that the approximation coefficients are 
only derived numerically, with symbolic calculation 
software like MAPLE.  
Thus, we intend to find a series expansion of the 
function ( )PG  , an approximation with an imposed 
precision on frequency interval [ , ]  . Generally, a 
given filter function ( )PG   can be approximated to a 
specified accuracy on a given frequency range by a 
polynomial function ( )aG   of order N: 

0
( ) ( )

N
j

P a j

j

G G a  


                      (4) 

The order N of polynomial ( )aG   depends on filter 
selectivity, imposed precision of approximation and 
frequency interval. Generally the polynomial G ( )a   
will be factored as [14]: 

1 2
2 4 2

1 1

G ( ) ( ) ( )
N N

a i j j

i j

a b c    
 

         (5) 

where 1 22 4N N N   is the order of polynomial 
approximation and   is a constant.       
  

3 Gaussian Prototype Approximation 

and Frequency Mapping for Designing 

Circular Filters  
In this section, 2D circular filters will be derived by 
applying a specific frequency transformation to the 
factored polynomial approximstion of the prototype 
frequency response. This procedure will be carried 
for two types of filters, namely low-pass (LP) and 
band-pass (BP).   
 
3.1 Trigonometric prototype approximation 

through Chebyshev series  
In order to find a trigonometric approximation as a 
polynomial in cos , first we make the following 
change of variable, also used in [18]: 

 arccos cosx x                  (6) 
For Gaussian function   2

1 exp( )G    , we will 
first find the Chebyshev series approximation for 
function 2exp( (arccos( / )) )  , normally calculated 
on the frequency range [ , ]  .  
The Chebyshev series is very useful and convenient, 
as it gives an approximation of a function which is 
uniform, basically with equal error along the entire 
specified interval, while the Taylor formula gives a 
polynomial approximation around a specified point 
and the approximation diverges rapidly towards the 
limits of given range. We use function  “chebyshev” 
available in MAPLE software. The approximation is 
accurate on specified range [ , ]  , but it diverges 
rapidly outside it. Since we further use the function 

 aG   for a 2D circular filter, obtained by rotating 
the 1D prototype around its axis, the approximation 
must hold on a larger range, namely [ 2, 2]  , 
otherwise circular filter characteristic will diverge 
towards the corners of the frequency plane, thus the 
shape will have large distortions.  
Consequently, the variable change (6)  will become: 

  arccos 2 2 cos  x x            (7) 
and we obtain, using a specified error of 0.01: 

  
2

2 3 4

exp arccos( / 2) 0.0848722+0.059327

        +0.01717295 +0.0027913 +0.00022045

x x

x x x

  

  

(8) 

Substituting back x by 2 cosx    , we get the 
approximation as a polynomial in variable cos : 

2
1( ) exp( ) 0.28209+.043937 cos +0.20755

  cos 2 +0.059444 cos3 +0.010328 cos 4  
G   

  

   

  
(9) 

or in a factored form like: 
2 2

2

exp( ) 0.08263 (cos +1.7948 cos +0.8065)
                              (cos +1.0829 cos +1.2736)

  

 

   

 
(10) 
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Of course, for more selective Gaussian filters, which 
correspond to larger values of parameter p, more 
terms of the Chebyshev series need to be kept, to 
obtain an approximation with the same precision. 
For instance, following the same technique, we get 
for the function   2

2 exp( 4 )G    :  
  2

2 exp( 4 ) 0.141034+0.264921 cos
+0.21967 cos 2 +0.16065cos3 +0.103749 cos 4
+0.059048 cos5 +0.029706 cos6
+0.013113 cos7 +0.00514 cos8

G   

  

 

 

   

 

 

 

(11) 

or in factored form as previously: 
 2

2

0.657931 (cos +0.981717)
            (cos +0.856848) (cos +0.62376)
            (cos +0.31344) (cos 0.03907)
            (cos 0.283997)
            (cos 1.177115 cos +0.457769)

G  

 

 



 

 

 

  

 

  

           (12) 

As a remark, the Gaussian   2
2 exp( 4 )G     can 

be regarded as a compressed version on frequency 
axis of the Gaussian   2

1 exp( )G     by factor 2   
( 2  ) and the order of approximation is 8, 
(double); we expect that for   2

3 exp( 9 )G    , the 
approximation order will be 12 (triple)  and so on.  
 
3.2 Parametric polynomial approximation 

using  Chebyshev series  
A somewhat different approach would be to design 
a parametric or adjustable filter, for which value p 
would appear explicitly in the filter transfer function 
and thus the design for new specifications reduces to 
a simple value substitution.  
The idea is to make the filter function scalable on 
the frequency axis (within certain limits), by making 

p   , where p can take arbitrary values; the 
scaling is a dilation for p<1 , compression for p>1.  The trigonometric approximation (9) of Gaussian 

  2
1 exp( )G     cannot be practically scaled, as it 

would contain cosine terms of the form cos( )pN  , 
generally with non-integer p, difficult to deal with. 
Using the efficient Chebyshev series as before, we 
obtain directly, without using the previous change of 
variable, the following polynomial approximation 
for   2

1 exp( )G    , calculated on range [ , ]  :  
2 2 2

1
2 4 2

1

( ) ( 5.7968)( 6.5916)( 8.7431)

( 9.7236)( 5.51094 13.36003) ( )G

G

H

    

   

    

    
 
(13) 

where 40.229375 10   .  
Compared to the trigonometric series (9) of order 4, 
we notice that the order is much higher, namely 12. 
Moreover, the approximation (plotted in red in Fig. 
1 (a)) diverges very rapidly outside the interval.  

For   2
2 exp( 4 )G     we get similarly, where the 

constant is 60.85705 10   :  
 

   
(a) 

 (b) 
Fig.1: (a) Polynomial approximations for Gaussian 

  2
1 exp( )G    ; (b) similar for   2

2 exp( 4 )G   
 

 (a) 

 
(b) 

Fig.2: (a) Function 2  and its approximation using Taylor 
series; (b) prototype 2( )G   and its  approximation 2( )PH   
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   

     

  

2 2 2
2

2 2 2 2

2 4 2
2

( ) 2.0516 3.28931 4.68917

6.1195 7.4554 8.5736 9.386

9.8045 1.89305 1.00547 ( )G

G

H

    

   

   

    

    

    

(14) 

which is plotted in Fig.1(b). The approximations are 
polynomials in even powers of frequency  , and 
they can be scaled with factor p, making p   .   
Next, we look for a simple approximation of 2 as a  
cosine series. While the Chebyshev series expansion 
is generally more convenient, in this case a precise 
approximation of 2  is not needed on entire range 
[ , ]  , but rather around zero. The variable change 

arccos cosx x     is first used.  In this way, 
we find the Taylor series of 2(arccos )x  around the 
point 1x  , truncated to the second-order term as: 

  
2 2

2

(arccos ) 2( 1) (1/3) ( 1)
                  7/3 (8/3) +(1/3)

x x x

x x

     

   
        (15) 

Substituting back in (15) the variable cosx   and 
using trigonometric identities, the following simple 
approximation is found [18]: 

2 2.5 2.66667 cos 0.166667 cos2          (16) 
As can be noticed, this approximation (curve 2 from 
Fig.2 (a)) is precise around zero, diverging towards 
the limits of the range [ , ]   with a large error as 
compared to the original function 2  (curve 1). 
However, by replacing back the expression (16) into 
each scaled factor of 1( )G   from (14), the marginal 
errors cancel away, resulting in an accurate overall 
approximation, shown in Fig.2 (b) where 2 ( )G   (in 
blue) and approximation 2( )PH   (red) are practically 
superposed. Therefore, we expect the resulting 2D 
circular filter to be also very accurate in shape. Thus 
a uniform approximation on the entire range [ , ]   
is not necessary. The advantage is the low order of 
approximation, which leads to a more efficient, low-
order 2D filter, convenient for implementation. 
 
3.3 Frequency mapping for circular filter 
This analytical design approach uses a 1D to 2D 
frequency mapping which, applied to the prototype, 
leads directly to the frequency response or transfer 
function of the 2D filter with desired circular shape.  
Starting from a 1D prototype with transfer function 

)(pH , a circularly-symmetric 2D filter ),( 21 H  
simply results by applying the 1D to 2D frequency 

transformation 2
2

2
1   : 








  2
2

2
121 ),(  pHH                  (17) 

which can be regarded as a rotation of the prototype 
around its central axis, generating 2D characteristic. 

A commonly used approximation of the 2D function 
2
2

2
1cos    corresponds to the 33  matrix: 



















125.025.0125.0
25.05.025.0
125.025.0125.0

C                      (18) 

such that the following approximation is valid: 
2 2
1 2 1 2

1 2 1 2

cos ( , )
0.5 0.5(cos cos ) 0.5cos cos

C   

   

 

    
      (19) 

This is in fact a simple particular case of McClellan 
transform. The function ),( 21 C  and constant level 
contours are displayed in Fig.3, showing a precise 
circular shape throughout a large domain, while near 
margins the contour circularity is visibly distorted, 
its shape looking more like a rounded square. The 
circular cosine function decreases smoothly and 
uniformly to the minimum value (-1) near frequency 
plane margins, with no visible ripple. Moreover, the 
deviation from circularity is rather unimportant for 
the filters under discussion, as will be shown in the 
following design examples.  
Let us consider a FIR filter ( )PH 

 
with frequency 

response given by the following expression [14]:    

0
1

( ) 2 cos
R

P k

k

H b b k 


                (20) 

Using trigonometric identities for kcos , Rk ...1 , 
we get a polynomial expression in powers of cos : 

0
1

( ) (cos )
R

k

P k

k

H c c 


                  (21) 

Considering this polynomial form of the prototype 
and applying the frequency transformation specified 
previously, we obtain the frequency response of the 
corresponding 2D circular filter [14]: 

 2 2
1 2 1 2 0 1 2

1
( , ) ( , )

R
k

P k

k

H H c c C     


      

(22) 
where notation 2 2

1 2 1 2( , ) cosC       defined in 
(19) was used. Thus, starting from a convenient 1D 
prototype filter with desired frequency response, the 
design of the 2D circular filter simply consists in 
replacing cos  in the prototype function ( )PH   

 
Fig.3: Characteristic and contours of circular cosine 1 2( , )C    
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with the circular cosine 2
2

2
121 cos),(  C .   

Supposing that the prototype ( )PH   is factored into 
first and second-order polynomial factors in cos  , 
and making the above substitution in each factor of 

( )PH  , we obtain the circular frequency response 

1 2( , )H  
 
in factored form as [14]:    

2
1 2 1 2

1 1

( , ) ( ) ( )
n m

i j j

i j

H k C b C b C b 
 

       
 
(23) 

where C is a shorthand notation for ),( 21 C .  
Since the given prototype filter can be expressed as 
a product of elementary functions, the circular filter 
will also have a factored transfer function, a major 
advantage in implementation. The large-size kernel 
H corresponding to the FIR filter 1 2( , )H    results 
directly decomposed into elementary, small-size (

33 or 55 ) matrices, as discrete convolution [14]: 
1 1( ... ... ) ( ... ... )i n j mk          H C C C D D D

  (24) 
The above relation is a matrix form of (23). Using 
the 33  matrix C from (18) and according to (23), 
each 33  matrix iC  from (24) is obtained from C  
by adding value ib  occurring in each factor in (23) 
to the central element of matrix C. Then, each 55  
template jD  is given by the expression [14]: 

1 1 2 0j j jb b     D C C C C              (25) 

0C  is a 55  zero matrix, with central element one; 

1(5 5)C  results by bordering C ( 33 ) with zeros, 
and the symbol * represents matrix convolution.  
 
4 Gaussian Circular Filter Design  
In this section, 2D circular FIR filters of LP and BP 
type will be designed in two versions, one being 
parametric or adjustable. 
 
4.1 Separable low-pass circular filters  
For a simple low-pass filter of this kind, we use the 
2D Gaussian property to be separable into two 1D 
Gaussian functions along the frequency axes. Indeed 
from the Gaussian prototype   2

1 exp( )G p     
we derive the separable circular filter: 

    
   

2 2
1 2 1 2

2 2
1 2

, exp

          exp exp

CG p

p p

   

 

  

   
             (26) 

Thus, a 2D Gaussian circular filtering can be simply 
reduced to applying a Gaussian 1D filtering on each 
frequency axis. Using prototypes   2

1 exp( )G     
and   2

2 exp( 4 )G     given by (9) and (11) and 
applying each on both axes, two Gaussian circular  

 
(a)                 (b) 

 
      (c)  (d) 

 
       (e)  (f) 

Fig.4: (a), (b) Prototype approximations for p=1 and p=4; (c)-(f) 
characteristics and contour plots of circular filters 
 
filters are derived, whose frequency responses and 
contour plots are shown in Fig.4, along with their 
prototypes. There can be noticed the very accurate 
Gaussian shape and circularity of the characteristics 
in the frequency plane, and also the absence of any 
ripple in the stop band, as show the level contours. 
 

4.2 Adjustable low-pass circular filters  
The presented design procedure is quite simple and 
efficient, leading in a straightforward manner to the 
factored frequency response of the low-pass filter. 
However, changing the filter selectivity through the 
value p, we have to resume each time all the design 
steps, which may become tedious.  
Of course these parametric LP Gaussian filters are 
also separable and are designed following the steps 
described in detail in sub-section 3.2. In Fig.5, the 
characteristics and level contours are plotted for the 
specified values of scaling parameter p. For p=1 we 
have the trivial case, where filter characteristics 
result practically identical with the one designed 
previously. As we notice, for values of p between 
0.5 and 2 the filter response has a correct shape and 
good circularity, with some ondulations in the stop 
band, visible at p=0.5 and p=2. Therefore, in this 
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version, the filter results adjustable with value p. 
Similarly, if we need a Gaussian circular filter to be 
adjusted in the range [2,8], we should use the pro-
totype   2

2 exp( 4 )G    , and so on. Of course, the 
larger the value p, the higher will be the filter order. 
 

  
          (a)      

  
          (b) 

  
          (c) 

  
            (d) 

  
            (e) 

Fig.5: Characteristics and level contours of parametric Gaussian 
circularfilters for scale parameter values: (a) p=1; (b) p=0.5; (c) 
p=1.3; (d) p=1.7; (e) p=2   
 

4.3 Adjustable band-pass circular filters 
Using this analytical design method applied to the 
Gaussian prototype, we can also obtain band-pass 
(BP) circular filters, with specified selectivity value 
p and peak frequency 0 .  
In order to obtain the 1D prototype for a BP filter, 
two Gaussians shifted around the frequencies 0  
are summed together, resulting in the BP prototype: 

     2 2
0 0exp ( ) exp ( )BPG p p              (27) 

Let us consider the procedure detailed in sub-section 
3.1, applied for a specified value of scale parameter 
p. The relation (9) for p=1 is written simpler as: 

2
1 0 1 2

3 4

( ) exp( ) + cos + cos 2
              + cos3 + cos 4  
G a a a

a a

   

 

  
    (28) 

Making 0    , we obtain the BP prototype: 
 2 2

1 0 0( ) exp( ( ) ) exp( ( ) )BPG                 (29) 
which, taking into account (28), can be written: 

1 0 1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

( ) 2 + cos( )+ cos( )
               + cos2( )+ cos2( )
               + cos3( )+ cos3( )
               + cos4( )+ cos4( )

BPG a a a

a a

a a

a a

    

   

   

   

  

 

 

 

      (30) 

It is easy to re-arrange (30) as follows: 
1 0 1 0 2 0

3 0 4 0

( ) 2 ( + cos cos cos 2 cos2
                cos3 cos3 cos4 cos4 )

BPG a a a

a a

    

   

    

    (31) 

In the general case, the BP prototype can be written: 

  0
0

2 cos cos( )
N

BP n

n

G a n  


               (32) 

Since the BP filters are no longer separable, we use 
the procedure presented in sub-section 3.3. 
The filter with p=1 is too wide and an efficient BP 
filter results only for 0 0.5   or close to it. The 
expression (32) is a function of two variables, 0  
and  , and generally cannot be factored. Instead, to 
get a more efficient filter, a nested implementation 
may be approached. 
Mathematically, this corresponds to a Horner 
polynomial form, which is the following: 

    

2 3
0 1 2 3

0 1 2 3 1

( ) a n

n

n n

P x a x a x a x a x

a x a x a x a x a a x

    

      
(33) 

Referring to the more selective BP filter with p=4, 
given by the expression: 

     2 2
2 0 0

0 1 0 2 0

3 0 8 0

exp 4( ) exp 4( )

       2 ( + cos cos cos 2 cos2
      cos3 cos3 cos8 cos8 )

BPG

a a a

a a

    

   

   

     

    

    
  (34) 

and using trigonometric identities for cosn , after 
re-arranging terms, we obtain the following Horner  
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form of the BP filter function, for order 8: 
  0

1 2 7 8+( ( ( cos ) cos ) ) cos
BPG h

h h h h



  



        (35) 

where the Horner coefficients depend on 0cos  and 
have the following polinomial expressions in the 
variable s, where 0coss  : 

2 4
0

6 8

3 5
0

7

2 4
2

6 8

0.9985934 0.937027 +6.156547

       4.532877 +1.315863
7.659075 25.946093 +30.00929

       11.749434
3.937027+44.813339 117.24553

        +118.4359367 42.1076054

h s s

s s

h s s s

s

h s s

s s

   

  

    

 

    

  

3
3

5 7

2 4
4

6 8

2 4
5

25.94609 +134.625769

       202.283215 93.995476
6.156547 117.24553 +413.335372

        512.331323 +210.538027                    
30.00929 202.283215 +359.217071

      

h s s

s s

h s s

s s

h s s

   

   

   

  

   

6

2 4
6

6 8

2 4
7

6

2 4
8

 187.99095
4.532877+118.435937 512.331323

        +734.55853 336.860843
11.749434+93.995476 187.99095

       107.4234
1.315863 42.1076054 210.53803

        336.86

s

h s s

s s

h s s

s

h s s

 

    

  

    

 

    

 6 80843 168.43042s s  
 (36)  

As a numerical example, for the BP filter with  p=4 
and 0 0.5  , we have 0cos 0s    and in this 
case the Horner decomposition is the following: 

     2 2

2 2 2 2

exp 4( 2) exp 4( 2)

0.998593+( 3.93703+(6.1565473
+( 4.5329+1.31586 cos ) cos ) cos ) cos

BPG     

   

     

 

    

 (37) 

For the BP filter with p=4 and 0 0.3  , we have  

0cos 0.5878s    and the Horner decomposition 
is given now by the general formula (35), with the 
coefficient values: 0 0.205071h  , 1 1.05356h  ,

2 1.8349h  , 3 0.1745h  , 4 3.14178h   , 5 2.7936h   ,

6 0.724816h  , 7 1.59634h  , 8 0.406624h  . 
Gaussian-shaped band-pass filters are not separable, 
unlike their low-pass counterparts. However, in this 
case the 2D filter results directly through a simple 
substitution. In the factored prototype frequency 
response or in its Horner polynomial form, we 
simply replace cos  by the circular cosine function 

1 2( , )C  

 
discussed previously, given by (19).  

Referring again to the general Horner form given in 
(35), this corresponds to a filter kernel resulting in 
an iterative manner as: 

         

 

   
        (a)                                             (b) 

    

 

       
                        (c)                                           (d) 
Fig.6: 1D prototypes, characteristics and constant level contours 
for Gaussian circular band-pass filters with parameters: (a) 

01,  0.5p    ; (b) 04,  0.5p    ; (c) 04,  0.3p    ; 
(d) 04,  0.7p     

  

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2020.16.14 Radu Matei 

E-ISSN: 2224-3488 124 Volume 16, 2020



0 1 2 7 8+( ( ( ) ) )BP h h h h h       G C C C C    (38) 
In this expression, the symbol   means convolution 
of matrices. For instance, in the case of the circular 
BP filter discussed before, with  p=4 and 0 0.3  , 
the kernel results of size 17 17 , through successive 
convolution of elementary matrices of size 3 3 . As 
shows (38), in the first step, the matrix C given by 
(18) is multiplied by the coefficient 8h , then 7h  is 
added to its central element; the resulted 3 3 matrix  
is convolved with C, then 5h  is added to its central 
element, obtaining a matrix of size 5 5 , and so on, 
until the overall filter kernel is obtained. This nested 
implementation, based on Horner form of the proto-
type frequency response, is the most efficient, as it 
requires the minimum number of operations.  
In Fig.6, the 1D prototypes, filter characteristics and 
level contours are shown for several BP circular 
filters with specified parameters (selectivity given 
by p and peak frequency of value 0 ). 
 
5 Comparative Discussion 
This work presented an analytical design method in 
the frequency domain for parametric circular filters. 
The proposed design procedure uses some efficient 
polynomial and trigonometric approximations, like 
Chebyshev series, which are easily calculated for a 
specified precision using a symbolic computation 
software, for instance MAPLE. An optimal trade-off 
is necessary between accuracy and complexity. For 
a high precision imposed, the filter would result of a 
large order and its kernel would be of a large size, 
therefore difficult to implement. Anyway, as shown, 
the filter kernel results directly decomposed into 
small-size matrices, which implies that the desired 
2D filter can be implemented as a cascade structure 
of elementary filters and achieved in several stages. 
The novelty of this approach as compared with other 
works on the topic consists in designing Gaussian 
circular LP and BP filters, adjustable in selectivity 
and peak frequency, based on frequency mappings 
applied to Gaussian prototypes, which differs from 
previous works. The circular FIR filters in [14] are 
based on the Fourier series. The Gaussian circular 
filter bank proposed in [15] is of IIR type, as well as 
the filter bank developed in [16], based on a digital 
prototype, with a complex frequency response of the 
2D filter. A new aspect is also the nested realization, 
which allows for an efficient implementation of the 
designed circular filter. The Gaussian prototype has 
several advantages. It is a smooth function, easy to 
develop in a polynomial or trigonometric series and 
leads to separable circular filters. Moreover, it it one 
of the most commonly used as it yields zero-phase 

2D filters, widely used in image processing as they 
do not introduce any phase distortions in the filtered 
image. In many works on this topic, Gaussian filters 
are designed and implemented as IIR filters, due to 
their advantages, mainly high processing speed and 
reduced computational complexity [9], [10].  
Compared to other relatively recent methods used in 
circular filter design, employing techniques such as 
global optimization on intervals combined with 
McClellan transform [2], nature-inspired, heuristic 
approaches such as Levy flight algorithm [3], semi-
definite programming [5], 2-D Laguerre distributed 
approximating functional [7] or sampling-kernel-
based interpolation [8], the technique proposed here 
is substantially simpler, but yielding very efficient 
2D parametric circular filters with tuning capability.  
The main reason why a FIR version was developed 
here is that FIR filters are unconditionally stable. It 
is more difficult to design stable 2D IIR filters in 
closed form, using analytical methods, due to 
stability restrictions. Even if one starts from a stable 
prototype, the applied frequency mappings may not 
preserve stability, therefore for the 2D IIR filters the 
stability is difficult to guarantee [18]. 
The purpose of this paper was mainly to present this 
analytic method and to give some design examples 
for LP and BP circular filters. Their image filtering 
capabilities are quite well known, that is why image 
filtering examples were not included in this work.   
 

6 Conclusion 
A simple and efficient analytical design method for 
2D Gaussian circular FIR filters was proposed, that 
starts from a specified prototype and yields a 2D 
filter with a frequency response in a factored, closed 
form. This design procedure is based on Chebyshev 
series approximations and on a specific frequency 
mapping expressed conveniently in matrix form and 
does not involve any global numerical optimization. 
The main advantage of this technique is that it leads 
to parametric, adjustable filters, since the 2D filter 
frequency response already contains explicitly the 
design specifications. For instance, to change filter 
selectivity we simply substitute the new parameter 
value, thus avoiding the need to resume the design 
procedure every time for different specifications.  
The low-pass filters are adjustable in selectivity, 
while the band-pass filters are tunable to a desired 
peak frequency. The filters have accurate shape, 
good circularity and relatively low order. A nested 
filter realization is presented, very efficient in 
implementation due to minimum number of 
operations required. Further work on this topic will 
focus on applying this method also to other FIR 
filters with various shapes. 
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